|   Electron Microscopy Solutions

      
Electron Microscopy Solutions
      

Image Gallery

1003 images found   |   View all
Back  | 1 2 3 4 5 6 7 8 9 10  ...  | Next 

Product

SEM

TEM

DualBeam

FIB

Neural holes in teeth

Neural holes in teeth covered after use toothpaste against allergic to become against cold drinks

Courtesy of Mr. Badar Al-saqer , university of dammam

Taken by SEM microscope

Magnification: 10358X
Sample: teeth
Detector: SE
Voltage: 15KV
Vacuum: HV
Horizontal Field Width: 10 μm
Working Distance: 10mm
Spot: 3

ZnO structures

ZnO structures grown on Si substrate.

Courtesy of Peter Heß

Taken by Nova NanoSEM microscope

Magnification: 30000x
Sample: ZnO
Detector: vCD
Voltage: 6 kV, LE 2kV
Vacuum: 0.0004 mbar
Horizontal Field Width: 10 μm
Working Distance: 5.6 mm
Spot: 3.0 nA

granules group of lactobacillus Bacteria using in industrial

granules group of lactobacillus Bacteria mixing with olive oil to give high efficiency with yogurt industria it is fixing by glutaraldehyde and dehydration by different concentration of alcohol

Courtesy of Mr. Badar Al-saqer , university of dammam

Taken by Inspect microscope

Magnification: 85X
Sample: bacteria
Detector: SE
Voltage: 15KV
Vacuum: HV
Working Distance: 10mm
Spot: 3.5

TSV Crossection 02

TSV Crossection 02, Helios G4 PFIB

Taken by Helios G4 PFIB microscope

TSV Crossection 03

TSV Crossection 03, Helios G4 PFIB

Taken by Helios G4 PFIB CXe microscope

Neuron on DNA Surface

This is an embryonic nerve cell growing on DNA. In this system DNA is being studied as a tool to dynamically control surface adhesion for cells. Changing the cell behavior at different time intervals allows us to recreate the dynamic growth sequences that occur naturally in regenerating animals like newts.

Courtesy of Dr. Mark McClendon , Northwestern University

Taken by Quanta SEM microscope

Magnification: 8,000X
Sample: Embryonic Nerve Cell
Detector: SE
Voltage: 3kV
Vacuum: 2 e-3Pa
Horizontal Field Width: 20um
Working Distance: 6
Spot: 3

Mechanical Pencil

Tip of a Mechanical Pencil

Courtesy of Mr. Daniel Rigler , Budapest University of Technology and Economics

Taken by Inspect microscope

Magnification: 138x

The Heart of Nanowire

Ni Nanowires in a polymer matrix

Courtesy of Gerald Poirier

Taken by Quanta SEM microscope

Magnification: 2696x
Detector: Se and BSE
Voltage: 15Kv
Vacuum: 2x10-5
Horizontal Field Width: 111 μm
Working Distance: 10.6 mm
Spot: 3 nA

Tube

Multiwalled carbon nanotube filled with crystalline material.

Courtesy of Ms. Elzbieta Pach , Institut Catala de Nanociencia i Nanotecnologia (ICN2)

Taken by Krios microscope

Magnification: 1.8 Mx
Voltage: 300 kV
Horizontal Field Width: 49.7 nm

Gold on Carbon

Gold on Carbon by FEI Company Extreme high resolution scanning electron microscope image of gold on carbon, imaged on a Magellan XHR SEM.

Courtesy of FEI Company

Taken by Magellan XHR SEM microscope

Magnification: 600,000x
Sample: Gold on Carbon
Voltage: .2 kV
Horizontal Field Width: 0.497 μm
Working Distance: 998.9 μm

Large depth of field.

Automotive light bulb filament.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 175X
Detector: SE
Voltage: 10 kV
Vacuum: 1.6e-6 mbar
Horizontal Field Width: 1,71 mm
Working Distance: 45.8
Spot: 3.2

AuNPs under graphene

Gold nanoparticles on an ITO surface under a layer of graphene. The structure of the ITO, which is transparent in optical microscopes, is visible in blue. The nanoparticles are clearly visible through the very thin layer of graphene. Sample prepared by Joanna Niedziolka-Jönsson for this article: dx.doi.org/10.1063/1.4867167

Courtesy of Dr. Martin Jonsson-Niedziolka , Institute of Physical Chemistry, Polish Academy of Sciences

Taken by Nova NanoSEM microscope

Magnification: 100000x
Sample: AuNPs on ITO covered by graphene
Detector: SE
Voltage: 10 kV
Vacuum: 2e-4 Pa
Working Distance: 4.2 mm
Spot: 3.0

Zoomed in view of a TSV array

Zoomed in view of a TSV array.

Courtesy of Sematech

Taken by Vion Plasma microscope

Magnification: 5000 x
Sample: silicon
Horizontal Field Width: 51.2 μm
Working Distance: 16.5 mm

Cous Cous structure

Structure of cooked cous cous. Grain on right hand side.

Courtesy of Dr. jim buckman , Heriot-Watt University

Taken by Quanta SEM microscope

Magnification: x 600
Sample: Cous Cous
Detector: BSED
Voltage: 20
Vacuum: 0.82 Torr
Horizontal Field Width: 245 microns
Working Distance: 9.9 mm
Spot: 3.5

Semeuse

Defect made of silver paste, similar to the famous "Semeuse" engraved by Oscar Roty . This character has been widely used for french coins.

Courtesy of Dr. Cyril GUEDJ , CEA, LETI, MINATEC Campus

Taken by FIB microscope

Magnification: 50 X
Sample: silver paste on silicon
Detector: SE
Voltage: 5 kV
Vacuum: 1mbar
Horizontal Field Width: 2.2 mm
Working Distance: 5.0
Spot: 1.0

Tungsten Filament

Tungsten Filament

Courtesy of Mr. MUHAMMET AYDIN , Namık kemal university

Taken by Quanta SEM microscope

Magnification: 800
Detector: etd
Voltage: 5
Horizontal Field Width: 518
Working Distance: 9,9
Spot: 2,5

Tellurium and Bismuth

Tellurium and Bismuth nano powder

Courtesy of Catherine Bibby

Taken by Tecnai microscope

Magnification: 9900x
Sample: nano powder
Detector: HAADF
Voltage: 200 kV
Horizontal Field Width: 6.9 microns
Working Distance: 546 mm
Spot: 5

Reishi Mushroom Powder

Reishi Mushroom Powder

Courtesy of gu li

Taken by Quanta SEM microscope

Magnification: 12,000x
Sample: powder
Detector: ETD
Voltage: 10.00kV
Vacuum: high vaccum
Horizontal Field Width: 5.00μm
Working Distance: 9.8mm
Spot: 3.0

Inner Quartz Plasma Tube

Particles were found on the wafer surfaces inline after a plasma was generated through this quartz tube. I cracked open the tube and found how the plasma was etching into the quartz, revealing these structures that would eventually thin enough to break off and land on the wafer.

Courtesy of Mr. Noel Forrette , IM Flash

Taken by Magellan XHR SEM microscope

Magnification: 2,000x
Sample: Quartz
Voltage: 5 kV
Working Distance: 4.0 mm

Dentinal tubules

Detail of the dentinal tubules viewed after demineralization process.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 13,462
Sample: Human tooth
Detector: MIX: SE plus BSE
Voltage: 10 kV
Vacuum: 130 Pa - Low Vacuum
Horizontal Field Width: 11 µm
Working Distance: 11.1

ZnO Nanoparticles

ZnO nanoparticles obtained by hydrothermal synthesis using microwave heating.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 20000x
Sample: ZnO
Detector: LFD
Voltage: 20 kV
Vacuum: 80 Pa
Horizontal Field Width: 14.9 μm
Working Distance: 14.9 mm
Spot: 3.0 nA

CuInSe2 Thin Films

CuInSe2 (Copper indium gallium selenide)thin films grown by electrodeposition in aqueous solution. The dendritic and colum structure shows the formation of nuclei growing in irregular regions of the substrate.

Courtesy of FRANCISCO RANGEL

Taken by Quanta SEM microscope

Magnification: 20,000x
Sample: CuInSe2 thin film.
Detector: Mix: SE+BSE
Voltage: 30 kV
Vacuum: 7,96e-7 torr
Horizontal Field Width: 14,9 μm
Working Distance: 10.1 mm
Spot: 2.0 nA

Zinc Oxide Clusters

Zinc Oxide clusters grown from a single seed. These rods are being used to study their "Field Emission" properties

Courtesy of Gerald Poirier

Taken by Quanta SEM microscope

Magnification: 951x
Sample: ZnO
Detector: SE
Voltage: 15Kev
Vacuum: -5 torr
Horizontal Field Width: 100 μm
Working Distance: 10.2mm
Spot: 3

Cigarette Filter Fibers

Cross-transverse view of a cigarette filter, showing cellulose acetate fibers. Ingestion or inhalation of fragments of cigarette filter fibers is a health problem for almost all smokers, but also contributes to the formation of lung cancer. Smoking is a trap. Quit now!

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 2500x
Sample: Cigarette filter
Detector: MIX: SE plus BSE
Voltage: 20 kV
Vacuum: 110 Pa
Horizontal Field Width: 119 µm
Working Distance: 15.1
Spot: 3.0

Golden nanoblob

Gold nanoparticles on a SiN substrate molten together under the influence of the electronbeam, forming one 'large' blob of gold.

Courtesy of Mr. Marien Bremmer , Leiden Institute of Physics

Taken by Tecnai microscope

Magnification: 420,000
Sample: Au / SiN
Voltage: 200
Spot: 3.0